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ABSTRACT
Software Product Lines (SPLs) are families of related software sys-
tems distinguished by the set of features each one provides. The
commonly large number of variants that can be derived from an
SPL poses a unique set of challenges, because it is not feasible to
test all the individual variants. Over the last few years many ap-
proaches for SPL testing have been devised. They usually select a
set of variants to test based on some covering criterion. A problem
when evaluating these testing approaches is properly comparing
them to one another. Even though some benchmarks have been
proposed, they focus on covering criteria and do not consider fault
data in their analysis. Considering the dire lack of publicly available
fault data, in this paper we present the first results of our ongoing
project to introduce simulated faults into SPLs along with using
evolutionary techniques for synthesizing unit test cases for SPL
examples.
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1 INTRODUCTION
Software Product Lines (SPLs) are families of related software sys-
temswhosemember variants are distinguished by the set of features
they provide [4]. The application of SPL practices has shown sig-
nificant technological and economic benefits [24]. Variability is the
capacity of software artifacts to vary and its effective management
and realization lies at the core of successful SPL development [27].
The possible variants that can be derived from an SPL are typically
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described by a variability model. However, variability makes SPL
testing challenging because the number of variants in SPLs is typi-
cally large, and therefore it is infeasible to test every single variant
individually.

The last few years have seen an increasing interest in SPL testing
approaches [8–11]. The common thread among these approaches
is to compute a subset of variants, called a covering array, that are
tested according to a covering criterion that specifies which variants
are selected. A vast number of different such covering criteria have
been proposed [20]. However, with all these different approaches
for SPL testing, one critical question remains unanswered: how do
they compare? There have been attempts to answer this question
with a benchmark [19]. However, they focus exclusively on cover-
age but do not consider fault data and its analysis. We argue that
including fault data is crucial, because a testing approach should
be evaluated on its ability to detect faults. Nevertheless, a testing
approach that discovers all the faults may still not be preferable if
its performance in other areas (e.g. runtime, covering array size)
lacks far behind the others. Note that our benchmark would not
render other comparison frameworks obsolete, but rather serve as
a complement to them.

In this paper we present our endeavor towards creating a bench-
mark for evaluating the fault detection capabilities of SPL testing
approaches. Due to the lack of availability of SPLs with executable
tests, we devised a process to generate tests automatically. Further-
more, we implemented an algorithm to introduce mutations into
SPL code, in order to simulate faults. Our final goal is to create
a benchmark consisting of SPL code including tests, a coherent
variability model, and a set of faults to be detected. This would
allow researchers to evaluate their SPL testing approaches more
thoroughly and more convincingly. With our process we can incre-
mentally expand the benchmark with more SPLs over time.

2 BACKGROUND
In this section we provide the background and basic terminology
required to describe our work, along with a running example.

BASE

WIPE LINE RECT COLOR

Figure 1: Feature Model for DPL
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Running Example. Our running example is the Draw Product
Line (DPL), an SPL of drawing applications, which contains five
features. Feature BASE is the basic framework of the SPL that all
variants have in common. Features LINE and RECT are responsible
for drawing lines and rectangles respectively. Feature COLOR allows
choosing a color to draw in and feature WIPE enables a user to wipe
the drawing area clean. The variability model of our example is
illustrated in Figure 1.

The most common form of a variability model is the feature
model which is a tree-like structure where the nodes describe the
features and the edges denote the different forms of relations among
features [5]. In our running example, for sake of simplicity, we use
two types of feature relations. The first type is optional features
which may or may not be selected in a variant when their parent
feature is selected. Examples are features COLOR and WIPE. A second
type is inclusive-or groups, where at least one member of a group of
features must be selected when their parent is selected. An example
are features LINE and RECT.

Figure 2 shows snippets of the annotated source code of our run-
ning example. We can see that the interface of class Canvas changes
depending on which features are selected. For instance, the method
wipe in Line 9 is only present in variants that contain feature WIPE.
Moreover, in class Rect we can see that the constructor in Line 15
changes depending if feature COLOR is selected or not.

1 class Canvas {
2 #ifdef $LINE
3 List <Line > lines;
4 #end
5 #ifdef $RECT
6 List <Rect > rects;
7 #end
8 #ifdef $WIPE
9 void wipe() {...}

10 #end
11 ...
12 }
13 #ifdef $RECT
14 class Rect {
15 Rect(
16 #ifdef $COLOR
17 Color c,
18 #end
19 int x, int y) {...}
20
21 int perimeter (){
22 return 2 * width + 2 * height;
23 }
24 ...
25 }
26 #end
27 ...

Figure 2: Code example of preprocessor annotations in DPL

Features and Feature Interactions. Within the realm of vari-
able software there are many definitions or interpretations for the
concept of features [6]. We regard features as increments in pro-
gram functionality, that can be activated (i.e. selected) or deactivated
(i.e. unselected). Each possible configuration of activated or deac-
tivated features constitutes a variant of the SPL. Similarly, there
are also multiple conceptions and interpretations of the concept
of feature interactions [2]. Broadly speaking, a feature interaction

occurs when the behavior of one feature changes depending on
the presence or absence of another feature or set of features [3].
Therefore, SPL testing has to select variants that best reflect these
potential feature interactions.

SPL Testing. Over the years, many different approaches for
testing SPLs have been devised. A common thread among these
approaches is the task to select variants based on a covering criterion.
The most prominent among them are approaches based on Com-
binatorial Interaction Testing (CIT) [13, 18, 20, 21]. CIT techniques
when applied to SPLs commonly use a variability model fromwhich
they calculate all valid t-wise feature-combinations which they use
for computing covering arrays of a strength t . For instance for t = 2,
also known as pairwise testing, a CIT algorithm has to find a set
of variants (i.e. covering array) to cover all combinations of two
features selected and not selected, that are allowed by the variability
model. In our example this means a pairwise CIT approach has to
cover 31 pairs of features, e.g. features LINE and RECT both selected,
feature LINE selected and feature RECT not selected, and so on.

However, many approaches relying on other covering criteria
have been proposed. To name some, Henard et al. maximize dis-
similarity between randomly generated variants to approximate
combinatorial coverage [14]. Javeed et al. proposed a covering crite-
rion decision coverage that includes all possible branches in source
code annotations [15]. For instance, for class Rect in our example,
decision coverage would cover all possible configurations with fea-
ture RECT not selected (i.e. removing the entire class), feature RECT
selected and feature COLOR not selected, and both features RECT and
COLOR selected.

MutationTesting.Mutation testing is generally used to evaluate
the adequacy of test suites to detect faults in the code. The under-
lying principle of mutation testing is to introduce small changes
into the program that simulate common faults [16]. These changes
are introduced into the source code and each change creates a so
called mutant. If the test results, of any test case, differ from testing
the original program, the mutant has been detected (a.k.a. killed).
The result of mutation testing is the mutation score, which is the
ratio of killed mutants over the total number of mutants seeded.

Comparing Approaches. With many different SPL testing ap-
proaches available, it is important to know how well they perform
compared to each other. Therefore a common benchmark that en-
ables researchers to straightforwardly evaluate their testing ap-
proach is needed. Lopez-Herrejon et al. proposed a benchmark for
comparing different CIT approaches that compute the same t-wise
covering criteria using simple metrics like performance or number
of variants to test [19]. Nevertheless, when comparing different
covering criteria we need to be able to assess their capability to
detect faults.

Ideally we would have a benchmark of SPLs with code including
real tests, a variability model, and real-life faults that can be tested
against. Unfortunately, publicly available SPL case studies that meet
these requirements out-of-the-box are hard (if not impossible) to
come by. The majority of available SPLs do not contain tests or real
life faults. Therefore, in our work we attempt to automatically gen-
erate tests and faults for SPLs, that can then be used in a benchmark
for comparing SPL testing approaches.
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Figure 3: Process overview

3 METHODOLOGY
In this section we describe the methodology we follow for creating
our benchmark and how we use it to evaluate the fault detection
capabilities when testing Java SPLs. Our proposed process includes
the following steps: i) If the SPL does not include any tests, we
automatically generate them. ii) Subsequently, we seed faults, by
mutating the SPL code. iii) Finally, we execute the tests on mutated
SPL variants. Figure 3 outlines all the parts of our methodology. We
will now go into more detail about the three components of our
process.

3.1 Generating Tests
Publicly available SPLs with actual test code are rare and hard to
find. Therefore, we devised a process to generate tests and use
them for testing SPLs. For this test generation we use EvoSuite, a
tool that generates tests for Java code and optimizes the whole test
suites towards satisfying a code coverage criterion [12]. However,
EvoSuite is not designed to take variability into account. Therefore,
we need to generate tests for individual variants and apply them
to the entire SPL, in a way that reflects the variability of the SPL
(i.e. taking into account different combinations of selected and
un-selected features).

The process for generating these SPL tests is illustrated in Fig-
ure 3, in the top left segment. First we need to select a subset of
variants to generate tests for 3 . We use the variability model 1
to compute a pairwise covering array using an algorithm similar to
AETG [7]. Then, we use the SPL source code 2 for the selection

of variants 3 that yields the code artifacts for the variants to
generate tests for 4 . Next we use EvoSuite 5 to generate tests
for each Java class of each of these variants. This gives us tests for
each individual variant 6 . Figure 4 depicts two tests generated for
different variants of class Rect of our running example, one with
the feature COLOR selected and one without.

1 class Rect_ESTest {
2 test0(){
3 new Rect(color , x, y);
4 ...
5 }
6 ...
7 }

1 class Rect_ESTest {
2 test0(){
3 new Rect(x, y);
4 ...
5 }
6 ...
7 }

Figure 4: Test Code for Variants of Class Rect

In order to create one coherent test suite for the SPL we automat-
ically combine all generated tests together 7 . That means all test
classes with equal name (i.e. testing the same source code class) are
combined into one test class, in which all tests are contained. There-
fore, we have to rename test methods and make sure that equal tests
(i.e. containing the exact same statement in the same order) are
contained only once. To account for variability we next annotate
this test code, to end up with one test suite for the SPL 8 . We do
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this by annotating entire test methods, according to the annotations
of the code they use. As an example consider Figure 5. Initially the
tests are not annotated. The first test test0 calls the constructor in
class Rect in Line 4. Class Rect is only present if feature RECT is
selected (see Line 15 in Figure 2), therefore the entire test method is
annotated with feature RECT. Because the constructor of class Rect
changes its signature depending if feature COLOR is present or not,
we also have to consider the annotation in Line 16 of Figure 2. In
Figure 5, the constructor call in test0 in Line 4 contains the color
parameter. Therefore the test also needs to be annotated with fea-
ture COLOR in Line 2. On the other hand, test1 is annotated with
negated feature COLOR, because the constructor call in Line 10 does
not contain the color parameter.

1 class Rect_ESTest {
2 #ifdef $RECT && $COLOR
3 test0(){
4 new Rect(color , x, y);
5 ...
6 }
7 #end
8 #ifdef $RECT && !$COLOR
9 test1(){

10 new Rect(x, y);
11 ...
12 }
13 #end
14 ...
15 }

Figure 5: Annotated Test Code for Class Rect

3.2 Seeding Faults
To use the generated tests to detect faults, we need to create some
faults in the SPL. We do this by introducing mutations into the
code of the SPL. For this we use mutation operators that have been
developed for the mutation testing tool µJava [23]. The process for
this is outline in Figure 3, in the bottom left segment.

We generate two types of mutants: i) random mutants, and ii)
directed mutants.

Random mutants: First we introduce random mutants 9 at
arbitrary positions in the SPL source code 2 . This creates random
faults 13 that may get some test cases to fail.

Directed mutants: Next we introduce faults at directed posi-
tions. These faults are introduced in order to make sure variability
is considered in our mutations. We filter the source code for parts
that are annotated by a specific number of t features 10 . For in-
stance, we can filter for code that is annotated with two features,
and find Line 17 in Figure 2. We introduce random mutants 12 at

arbitrary positions in these filtered source code parts 11 . As an

outcome we get a set of mutated source code classes 14 .
However, just like for EvoSuite, µJava does not consider variabil-

ity. Nor does it allow us to control, below file level, where it will
introduce mutations. This would not be a problem if we just want
to generate some random mutants, but if we want to insert directed
mutations it is not enough. Therefore, we implemented all method-
level mutation operators, using the descriptions provided by the

authors of µJava. Moreover, we implemented the required filters
to identify source code that is annotated with a specific number of
features.

These mutations are very simple changes to the source code.
For instance, in our example a mutation would be changing the
operators in the expression in method perimeter in class Rect.
Figure 6 shows one such possible mutant. In Line 5 the + operator
was changed to a ∗, as we highlighted and underlined. All three
operators can be changed to any other arithmetic operator, and each
of these changes constitutes a separate mutant. For more details
on the mutation operators we refer to the µJava site1 for further
documentation.

1 #ifdef $RECT
2 class Rect {
3 ...
4 int perimeter (){
5 return 2 * width * 2 * height;
6 }
7 ...
8 }
9 #end

Figure 6: Code example for a mutations

3.3 Executing Tests
Applying our benchmark requires executing the tests. For this
execution the SPL testing approach under evaluation must select a
set of variants to test (see 15 in Figure 3). However, the execution
of the tests 8 to detect the introduced mutants has to consider
variability, because it can influence test outcomes. For instance
if inside a method, that is called by the test, the implementation
changes depending on the presence or absence of a feature, the
result of the method call can change as well. Therefore assertions
in the unit test might not hold in certain variants, and we would
wrongly assume that the mutation was detected. To eliminate this
we first test the un-mutated variants 16 to create a baseline for

the test results. Next we insert the mutants 13 & 14 into the

variants 17 , by replacing the un-mutated class with the mutated
one. With this, we end up with a mutated version of the selected
variants for each mutant 18 . Each of these mutated versions of the

selected variants is then tested 19 and the results of the tests 8

are compared 20 against the test results of testing the un-mutated
variant. Therefore, each variant has to be tested with each mutation
inserted into it. If we discover differences in the results we consider
the mutant as detected. For instance, in our running example, a test
calling method perimeter (see Line 21 in Figure 2) does not have
any problem when this method’s code is not mutated. However,
if the code of method perimeter is mutated, like for instance in
Figure 6, the same test will fail, because the method call will not
produce the expected result. Because, the test did not fail in the
un-mutated variant, we can exclude variability as the cause for

1http://cs.gmu.edu/~offutt/mujava/

http://cs.gmu.edu/~offutt/mujava/
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the test case failing, and therefore conclude that the test detected
the mutant correctly. The result for our benchmark 21 is a set of
detected mutants for a given SPL.

4 FIRST RESULTS
Here we present the first results of our benchmark. To date, we have
found four case studies to integrate in this benchmark as shown in
Table 1. These SPLs are implemented in Java, their source code and
their variability model are available and are consistent.

4.1 Systems
Let us now briefly describe each system included in our benchmark
so far. DPL is the full implementation of our running example, the
Draw Product Line. GPL is short for the Graph Product Line and is
a configurable framework of basic graph algorithms [17]. Notepad
is a Java Swing application with functionalities similar to Windows
Notepad. VOD2 is a product line for video-on-demand streaming
applications [22].

Table 1 lists for each of these systems the number of features, the
number of possible variants according to the feature model, and the
lines of code in the SPL according to the CLOC tool3. Moreover, we
listed the number of variants used for generating tests, the number
of test cases generated, and the average execution time of the tests
for a variant. The experiments have been conducted on a system
with an Intel Core i7-4770@3.40GHz processor, 16GB of memory,
and a 64Bit environment.

We generated tests for all four systems and introduced mutations
into them. For each system 30 random mutants and 10 directed
mutants were introduced. Directed mutants were introduced to
source code positions that were annotated by at least two features.
DPL is an exception to this, because the source code of this system
is annotated so that there was no single directed mutant possible
with the filter used. Therefore, for DPL we only used the 30 random
mutants.

4.2 Experiments
In order to demonstrate the usage of our benchmark, we selected
variants using two different covering criteria. First, the same pair-
wise coverage, as we used for generating tests [7]. Second, the
decision coverage, mentioned earlier in the paper, as proposed by
Javeed et al. [15]. We performed ten individual runs for each cover-
ing criterion to account for non-determinism, and make sure we
do not only get one lucky or unlucky result.

Furthermore, we wanted to check how much the selection of
variants for test generation affects the quality of the generated
tests. Therefore, we generated tests for all possible variants of the
systems DPL and VOD, and executed the benchmark. The number
of tests generated using all variants are in parentheses in Table 1 in
column |Tests |. We selected these two systems because for them it
was feasible to generate all variants, since they have a relatively low
number of possible variants. Note, we computed the covering arrays
once, and tested the variants with both test suites individually.

2http://peace.snu.ac.kr/dhkim/java/MPEG/
3http://cloc.sourceforge.net/

4.3 Metrics
Wemeasured the number ofmutants that were detected for each sys-
tem, with each covering criterion, and with each test suite (impor-
tant in the case of DPL and VOD). To check if the differences in re-
sults between different covering criteria (or different test suites) are
statistically significant, we apply the Wilcoxon-Rank-sum test [26].
We used a type-one error of α = 5% in the tests for significance.
When comparing the benchmark results R(X ) for two different cov-
ering criteria (or different test suites) A and B the null hypothesis
H0 and the alternative hypothesis H1 are:

H0 : R(A) = R(B) | H1 : R(A) , R(B)

Moreover, we computed the non-parametric effect size measure
Â12 as proposed by Vargha and Delaney in [28]. This Â12 value
measures the probability that the results for ametricR(X ) are higher
for one covering criterion A versus another B, as a value between
zero and one. For instance, Â12 = 0.3 means that covering criterion
A results in higher values for our metric R(X ), 30% of the times. If
the results of the two covering criteria are equal, then Â12 = 0.5. In
general, if Â12 < 0.5 R(A) is worse, if Â12 > 0.5 R(B) is worse. The
closer, Â12 is to 0.5 the more similar the results are.

4.4 Results
Figure 7 shows the number of mutants detected by each covering
criterion. We distinguish between random and directed mutants.

Random Mutants: Looking at Figure 7a and Figure 7b we can
see that the number of random mutants that were detected in our
benchmark did not change significantly with the two different cov-
ering criteria. Table 2 lists the results for the Â12 measure, for the
number of mutants detected with pairwise vs. decision coverage.
For DPL the exact same mutants were detected for both covering
criteria, but with on average 4 variants for decision coverage instead
of an average of 5.9 variants for pairwise coverage. Similarly, our
benchmark achieved the same results for random mutants for GPL
and Notepad for both covering criteria. For GPL, one pairwise run
detected an additional mutant (i.e. Â12 = 0.55 in Table 2) and for
Notepad two runs detected one and two additional mutants respec-
tively (i.e. Â12 = 0.6 in Table 2). However, the Wilcoxon-Rank-
sum test shows no statistically significant difference. Moreover,
the number of variants was also decreased for decision coverage
for both systems (GPL 7.3 vs. 15.2, Notepad 4.2 vs. 13.5). For VOD
we found a small advantage for using pairwise coverage over de-
cision coverage. Here six out of the ten runs detected 14 mutants,
instead of all runs with decision coverage only detecting 13. This is
statistically significant according to the Wilcoxon-Rank-sum test
(p −value = 0.005016). Moreover, the Â12 value in Table 2 suggests
that pairwise coverage yields better results in 80% of the cases. How-
ever, in the case of using the test suite that was generated from all
variants, that difference becomes smaller, as seen in Â12 = 0.7 in
Table 2, and therefore according to theWilcoxon-Rank-sum test not
statistically significant any more. The average number of variants
for VOD are 2 for decision coverage vs. 7 for pairwise coverage. Con-
sidering that on average fewer variants are required for the decision
coverage criterion, and that in most cases there is no significant
differences in number of faults detected, it appears that the less

http://peace.snu.ac.kr/dhkim/java/MPEG/
http://cloc.sourceforge.net/
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System |F | |V | #LoC |V | Test gen. |Tests | Exec .Time

DPL 5 12 274 5 159 (380) 1.2s (1.6s)
GPL 28 273 922 15 584 4.7s

Notepad 25 82627 963 13 168 3.8s
VOD 11 32 4401 7 1909 (7092) 85.8s (236.2s)

|F |: Number of Features, |V |: Number of possible Variants, #LoC: Number of Lines of Code,
|V | Test gen.: Number of variants selected for test generation, |Tests |: Number of test cases generated,

Exec .Time: Average execution time of the test suite for one variant
Table 1: SPL benchmark Overview

expensive decision coverage is preferable to pairwise coverage for
our systems.

Directed Mutants: For GPL, Notepad, and VOD the results for
directed mutants are exactly the same. However, when applying
the test suite generated using all variants to VOD, pairwise coverage
detects one mutant in two separate runs. This suggests that one
of the directed mutants is only detected by a certain combination
of features and by using the test suite generated from all variants.
Nevertheless, the Wilcoxon-Rank-sum test reveals that the differ-
ence is not statistically significant. So again, there is no statistically
significant difference detectable in the fault detection capabilities
of the two covering criteria, although decision coverage requires
significantly fewer variants to test.

Test suites: Next we present the results for comparing the dif-
ferent test suites generated for DPL and VOD. The results with the
test suite generated using all variants are denoted with the system
name with the word “FULL” added to them, in Figure 7 and in
Table 2. Table 3 lists the Â12 values for comparing the number of
mutants detected for the pairwise generated test suite versus the
test suite generated using all variants (i.e. “FULL”). We discovered
that for DPL there was absolutely no difference in the results for
either covering criterion. However, for VOD the Wilcoxon-Rank-
sum test does suggest statistically significant differences when
detecting random mutants using the “FULL” test suite for both
covering criteria (p −value = 0.006653 for pairwise coverage, and
p − value = 1.594e−05 for decision coverage). This can also be ob-
served in Figure 7a and Table 3. Nevertheless, this was not found
for detecting directed mutants, where we detected no statistically
significant difference. These results corroborate our assumption
that the selection of variants for test generation, can influence the
quality of the test suite.

Moreover, the execution of these “FULL” test suites takes signifi-
cantly longer than the pairwise generated test suites, as can be seen
in Table 1 in column Exec .Time . This is because of the larger size
of the “FULL” test suites.

5 LIMITATIONS
During the work on creating this benchmark, we recognized some
limitations and issues that should be considered when evaluating
an SPL testing approach with this benchmark.

The first limitation is that we use automatically generated tests.
Of course manually developed tests by domain expert would be
preferable, but as we have mentioned before systems with such

System Random Mutants Directed Mutants
DPL 0.5 -

DPL FULL 0.5 -
GPL 0.55 0.5

Notepad 0.6 0.5
VOD 0.8 0.5

VOD FULL 0.7 0.6
Table 2: Â12 values for number of mutants detected with
pairwise vs. decision coverage

System Random Mutants Directed Mutants
DPL 0.5 -

VOD pairwise 0.18 0.4
VOD decision 0 0.5

Table 3: Â12 values for number of mutants detected with
pairwise generated tests vs. FULL generated tests

tests are hard to come by. We have plans in our future work, to eval-
uate our generated test suites, by comparing their results against
manually developed tests.

The next limitation is regarding the mutations that we used in
order to simulate faults. Again, real life faults would be preferable,
but are hard to come by. Moreover, it can happen that some mutants
may be undetectable by the tests in the SPL. On the other hand,
some mutants may be killed by every possible variant in the SPL,
and will therefore inflate the numbers of faults detected. Therefore,
the metric of detected mutants is only expressive when comparing
different approaches.

Another problem we have encountered lies in the selection of
variants for generating tests (see 3 in Figure 3). We use an ap-
proach to select variants for testing to generate a test suite that is
then used to evaluate an approach with the same goal of selecting
variants for testing. The quality of the generated test suite will
depend, at least in part, on the variants we select for the genera-
tion. We attempted to evaluate the impact the selection of variants
has on the generated test suite, by devising test suites using every
variant of two SPLs. For DPL selecting all the variants did not make
a difference in the benchmark results. However, for VOD we did
detect differences when using the two different test suites. This
indicates that the selected variants for which the tests are generated
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Figure 7: Mutants detected

can impact the benchmark results. This is an issue that we want to
further investigate as part of our future work.

6 RELATEDWORK
As we have mentioned before Lopez-Herrejon et al. proposed a
benchmark for comparing different CIT approaches to one an-
other [19]. Their benchmark uses metrics like performance, and
the number of variants that need to be tested, to compare different
approaches. These metrics are useful to assess the effort applying a
testing approach, and are therefore important when comparing dif-
ferent approaches. The difference to our benchmark is that we want
the evaluate the actual capabilities for detecting faults. Therefore,
our benchmark allows researchers to compare different covering
criteria to one another, in a more expressive way.

An alternative method to evaluate the fault detection capabilities
of SPL testing approaches is using real reported faults. For instance,
Sánchez et al. mined a list of faults from the open source web
content management framework Drupal, using information from
their issue tracking system [25]. They managed to identify 3392
faults, and report the features and interactions that are associated
with these faults. Similarly, Abal et al. identified bugs in Linux,
by mining bug-fixing commits to the Linux kernel repository [1].
They have since expanded their database of faults in Linux and
added other systems as well. Our benchmark is different because it
executes test on the systems, instead of simply checking if certain
interactions, that have reportedly caused faults, are covered. We
encountered some problems with using these fault databases in our
work, which encouraged us to create our own benchmark in the
first place. The main problem with using the database form Abal
et al. for us was, that the reported faults span over many different
code versions of the Linux kernel with changes in the variability

model between them. This is a problem for evaluating covering
arrays, because, for instance in the case of CIT, one would have to
generate a covering array for each version of the variability model
and could in the worst case only evaluate one fault per covering
array. The reported faults for the Drupal system do not have this
problem. However, we did not include this work in our benchmark
for now, because Drupal is implemented in php, which made it
difficult for us to apply covering criteria that analyze the source
code, like the decision coverage criterion used in our experiments.
Nevertheless, it may be valuable to include these fault databases
into our benchmark in the future.

7 CONCLUSIONS AND FUTUREWORK
In this paper we presented our work for creating a benchmark for
evaluating the fault detection capabilities of SPL testing approaches.
Because of the lack of publicly available SPL tests and real SPL faults
we devised a process to automatically generate tests and faults. We
presented our preliminary results, consisting of a set of Java SPLs
for which we generated tests and introduced mutations to simulate
faults. Finally, we discussed some limitations we have recognized in
our current benchmark, and we plan to address them in our future
work.

The first item for our future work is to evaluate the quality
of our generated test suites. Our plan is to expand our efforts to
find SPLs that contain tests and then also generate tests for these
SPL according to our described process. This would allow us to
directly compare the benchmark results of our generated test suite
to manually implemented tests. To this date we have only identified
one SPL that includes tests, ArgoUML an open source project that
has been made into a product line of UML modeling tools. Due to
time constraints we were not able to include this system into our



SAC’18, April 2018, Pau, France Stefan Fischer, Roberto Erick Lopez-Herrejon, and Alexander Egyed

results yet. Alternatively, we will have to derive our own manual
tests to evaluate against, or find other test generation tools and
compare the results.

The next item for our future work is regarding the generated mu-
tants. We plan to introduce further steps into our process to detect
and exclude equivalent mutants. As of this time we only exclude
mutants if they produce the exact same source code. Furthermore,
we plan to determine the quality of the generated mutants, and
only include mutants that best represent real-life faults. Next we
plan to to identify mutants that are either killed by every variant or
by no variant at all. Because, much like equivalent mutants, these
mutants only inflate the number of mutants that were discovered,
or lead to interpreting undetected mutants as shortcomings in the
evaluated approach respectively.

To complete our benchmark we need to include more SPLs.
Therefore, one of the most important items for our future work will
be to identify more SPLs and also extend our process to work for
other programing languages, in oder to include SPLs implemented
in languages like C/C++.

Finally, we are interested in identifying feature interactions. As
we mentioned in the paper, variability can lead to test cases fail-
ing for certain variants. We plan to investigate these failing tests
and find out if we can use them to identify feature interactions
in the executed code parts. Knowing these interactions can be a
second way to use our benchmark. Researchers could simply check
if their covering arrays contain feature combinations that reveal
these interactions (similar as one would use a fault database with
associated interactions).
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